PONTIFICIA
UNIVERSIDAD
CATOLICA
DE CHILE

INTRODUCCION A LA
PROGRAMACION

=8 :?:525'“
Hn -“-"’E{ '31
‘tfl PONTIFICLA

7€ *\ UNIVERSIDAD ° '
\%ﬁ%;%ff' camuca. Ob] EthOS

* Materiales clase pasada

* Clase expositiva
— Videos seran subidos despues

Introducir listas y tuplas

Enfasis en listas, pues tuplas son version reducida

Demostrar con codigo

3 £
A s T
Epiaer R
HEIER r

fg@% :Que es una lista?
. (',QUé es? Una lista (tipo |iSt) eg >>> # definamos algunas Llistas
una secuencia finita y
ordenada de valores
(elementos)
- Muy parecidas a las tuplas

- Pero admiten cambio de
contenido ['hola', 'mundo']

>>> [10,20,30,40]
[10, 20, 30, 40]

>>> ["hola","mundo"]

>>> [True,True,True]
* Ejemplo:
[10, 20, 30, 40, 50]

[True, True, True]

%ﬁﬂﬁQ\HmHHHA

e *} UNIVERSIDAD ~ ° °
%%h cdiich. Pueden contener multiples tipos
o LaleﬂaS|3uedew1contener >>> # definamos algunas listas

ints, floats, strings, tuplas, etc,

incluso otras listas >>> x = [10,0,"hola",False,

-5.5]
>>> print(x)
* No hay restriccion sobre los [10, 0, 'hola', False, -5.5]
tipos de valores que pueden
contener >>> x = [-1,True, (5,5,5)]
>>> print(x)

. [_la True) (5) 5) 5)]
* Ejemplo:

[5, 5.5, (6, 6.5), False]

f@ﬁ:_ FOTTC :
e moues Listas de cero y un elementos

e Lista vacfa: podemos definir ~ >>> a = LI
. , >>> b = list()
una lista vacia de dos

Mmaneras >>> print(a,b)
x = [] L] L[]
y = list()
, : , >>> a == b
Aqui x e y son listas vacias True

(son iguales para Python)

 Lista de un elemento: se
>>> ¢ = [1]
coloca el elemento entre 55> print(c)

corchetes [1]
x = [1]

ﬁ-k{

f@ﬁ:_ UNIVERSIDAD
W) omone Tuplas de cero y un elementos

 Tupla vacia: podemos definir i: S - é>)
una tupla vacia de dos = tuple()

Mmaneras >>> print(a,b)
x = () 0O O
y = tuple()
Aqui X e y son tuplas vacias >>>a ==b
True

(son iguales para Python)

* Tupla de un elemento: se oos (1.)
cC =)
coloca el elemento entre >>> print(c)

paréntesis, pero con coma (1,)
x = (1,)

r1n~ E'SE ’:
fﬂ' S PONTIFICIA
Géﬁ:'ﬁu UNIVERSIDAD
-.-a ; -= CATOLICA
S _x DE CHILE

 |a concatenacion entre listas
y entre tuplas se hace igual
que con strings

e Usamos el operador + para

concatenar
[1,2,3] + [4,5,6]
(132)3) t (4)5)6)

* No podemos concatenar listas a
strings, tuplas u otros tipos de
datos

Concatenar listas

>>> [1,2,3] + [4,5,6]
[l) 2) 3) 4) 5) 6]

>>> [1 + [1 + [1 + []
>>> [1] + [2] + [3] + [4]
[1, 2, 3, 4]

>>> [1,2,3] + [4]
[1, 2, 3, 4]

>>> [1,2,3] + [1 + [4]
(1, 2, 3, 4]

) e, ,
Q%@ caTouica ¢ ¢ Concatenar listas con tuplas??

Conversion de tipos: asi como a=1int(b) convierte benun int

(seabuniint, float, str), podemos convertir una secuencia de
un tipo en otra secuencia de otro tipo:

A=1[1, 2.0, "11i", "cuatro"] # una Llista
B = (5, 6.0, 'vii', 'eight') # una tupla
L = A + 1ist(B) # concatena A con B-como-lista
M = tuple(A) + B # concatena A-como-tupla con B

X = list(A) + Tlist(A) # A ya era lista, se clona

o

)
FORT O PONTIFICLA
el

\%ﬁ’@”/' St Acceder a elementos segun su indice

g
St

True |False| 10 20 | -5.5]'yup'| © @ | nope'

0 1 2 3 4 5 6 7 8
9 8 7 6 5 4 3 2 -1

x = [True, False, 10, 20, -5.5, 'yup', 0, 0, '"nope']
Python nos deja acceder a los elementos de una lista de manera sencilla

* Basta indicar su indice o posicion en la lista
* Funciona igual que con strings y tuplas

o

)
FOETS PONTIFICIA
e »ﬁ%fiﬁ

\%ﬁ’@”/' St Acceder a elementos segun su indice

1)

True |False| 10 20 | -5.5]'yup'| © @ | nope'

0 1 2 3 4 5 6 7 8
9 8 7 6 5 4 3 2 -1

El uso de indices es como en strings. Sabiendo esto, qué entrega:

e len(x) —=>
e x[1] —=>
* x[6] -=>

e

n

Aty
VT ERE o
AT ord PONTIFICLA
”@Fﬁ;l UNIVERSIDAD
%}Y_ﬂd/ CATOLICA
\ DE CHILE

Acceder a elementos segun su indice

True |False| 10 20 | -5.5]'yup'| © @ | nope'

0 1 2 3 4 5 6 7 8
9 8 7 6 5 4 3 2 -1

El uso de indices es como en strings. Sabiendo esto, qué entrega:
« len(x) -—-> 9

e x[1] --> False
e x[6] --> 0

i
[T)
S T EE

¢ ~Jv5 PONTIFICLA

”@Fﬁ;l UNIVERSIDAD
%}fy CATOLICA

\ DL CHILE

Acceder a elementos segun su indice

True |False| 10 20 | -5.5]'yup'| © @ | nope'

0 1 2 3 4 5 6 7 8
9 8 7 6 5 4 3 2 -1

El uso de indices es como en strings. Sabiendo esto, qué entrega:
* x[-4] -=>

 x[-1] —=>
e x[-len(x)] -->

Hn~ “"‘L-*&{ 1)

e s 4n su indi
@g@ Acceder a elementos segun su indice

True |False| 10 20 | -5.5]'yup'| © @ | nope’

0 1 2 3 4 5 6 7 8
9 8 7 6 5 4 3 2 -1

El uso de indices es como en strings. Sabiendo esto, qué entrega:

* x[-4] -=> 'yup'
e x[-1] -—> 'nope'
e x[-len(x)] --> True

éﬁm@ e : :
\gw/ catoLics Rebanadas (slices) de listas

True |False| 10 20 | -5.5]'yup'| © @ | nope'

0 1 2 3 4 5 6 7 8
9 8 7 6 5 4 3 2 -1

El uso de slices es como en strings. Sabiendo esto, que entrega:

* x[0 : 3] —=>
e x[5 : 9] —=>
* x[-7:-2] -=>

v-._’k{%
o PONTIFICLA

f@'ﬁ‘_ UNIVERSIDAD ° .
G oo Rebanadas (slices) de listas

True |False| 10 20 | -5.5]'yup'| © @ | nope’

0 1 2 3 4 5 6 7 8
9 8 7 6 5 4 3 2 -1

El uso de slices es como en strings. Sabiendo esto, que entrega:

3] --> [True, False, 10]
* x[5:9]1 --> ['yup', 0, 0, "nope']
2 :l -——> [10, 20, _505, 'yup', 9]

éﬁm@ e : :
\gw/ catoLics Rebanadas (slices) de listas

True |False| 10 20 | -5.5]'yup'| © @ | nope'

0 1 2 3 4 5 6 7 8
9 8 7 6 5 4 3 2 -1

El uso de slices es como en strings. Sabiendo esto, que entrega:

* x[4 :-4]
e x[-3:] —=>
e x| : 3]

i
[T)
S T EE

¢ ~Jv5 PONTIFICLA

”@Fﬁ;l UNIVERSIDAD
%}fy CATOLICA

\ DL CHILE

Rebanadas (slices) de listas

True |False| 10 20 | -5.5]'yup'| © @ | nope'

0 1 2 3 4 5 6 7 8
9 8 7 6 5 4 3 2 -1

El uso de slices es como en strings. Sabiendo esto, que entrega:

* X[4 :-4] --> [-5.5]
e x[-3:] --> [0, 0, '"nope']
* X[: 3] --> [True, False, 10]

f. ' c!d.
i '\'fl‘ﬁfi_r;.j".

/ T POMNTIFICLA
@éﬂ:@ UNIVERSIDAD

'C,-*LTDLTCA I 1 I
@@; o Recorriendo usando indices
 Podemos recorrer los elementos ConL = [True,False,0,1,
de una lista usando indices 2,3,4,5,"yeah"], output:
* Ejemplo con for: 0 -> True
for 1 in range(len(L)): 1 -> False
print(i, "=>", L[i]) 2 -> 0
. . 3 ->1
* Ejemplo con while: 4 -> 2
i=0 5 -> 3
while i < len(L): 6 -> 4
print(i, "->", L[1])
i = 9+1 7 ->5
8 -> yeah

e o i A
(ol
gt B . -

ereq T o PONTIFICLA

é}@ﬁ:'ﬁ;ﬁ' Llhl"pf’I:'RSlL'lAD . [-
Gy oo Caso especial: for sobre listas

* La instruccion for también puede Output:
iterar sobre listas, obteniendo
directamente cada elemento de la True
lista en cuestion False
- Igual que con strings y tuplas 0
1
« Codigo de ejemplo: 2
3
L = [True,False,0,1,2,3, 4,5,"yeah"] 4
5
for ¢ in L: yeah

print(c)

: f:-‘;z:a

%{F ﬁ s Podemos detectar elementos (in)

7/ DL CHILE

 Lainstruccion in detecta >>> L = [10,0.5, "txt"]
. >>> 10 in L
pertenencia e
>>> 'txt' in L
True
* in entrega True/False >>> 0 in L
(booleano) False
>>> 10 not in L
False
o Similarmente, esta la >>> 'txt' not in L
False

instruccion not in, que es la ,
B . >>> 0 not 1n L
negacion de in True

f @ﬂ%{) uivERSIDAD
B cronc
« Una sublista es una porcion

(rebanada, slice) de una lista
- Ej. [10,5] es sublista de
[1,10,5,8]

| ainstruccion in no detecta

sublistas
— ..ni subtuplas

No podemos detectar sublistas (in)

>>> L = [10,0.5, "txt']

>>> [10,0.5] in L
False

>>> [10,0.5] == L[:2]
True

>>> [10] in L
False

>>> [10] == L[:1]
True

;"'-“-5’: iy

;’I/***”i: PONTIFICLA
@éﬂ:'ﬁ UNIVERSIDAD
%T’" =l CATOLICA

\ %" DT CHILE

x.count(u)

* Entrega la cantidad de veces
que aparece el elemento u
dentro de x

e Sielelemento no fue
encontrado, entrega 0

Contar elementos (count)

>>>
>>>

>>>

>>>

>>>

>>>

>>>

= [5,-5,0,0.5,"python",0,0]

x.count(0)

.count(5)

.count(-5)

.count("python")

.count(10)

.count ("PYTHON")

LAY PONTIFICLA
S UNIVERSIDAD

Ctin
%@%&%ﬁﬂ? CATOLICA
\%i-ﬂﬁ/ DL CHILE

X.index(u)

e Encuentra el primer indice en
el cual se encuentra el
elemento u, o falla

Encontrar elementos (index)

>>> X =
>>> x.index(0)
2
>>> X
0]
>>> X
1
>>> X
4

.index(5)
.index(-5)

.index ("python")

>>> X.index(10)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: list.index(x): x not in list

>>> x.index("PYTHON")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: list.index(x): x not in list

[5,-5,0,0.5,"python",0,0]

o
|¢.-!'.~ --*T.l'.-;:-r.;'d'-ﬁ
"u_,j“:g PONTIFICLA

E‘ﬁ]:“;«i \g" \ UNIVERSIDAD
?{?q | CATOLICA
‘\ T DL CHILE

Mutacion de listas
(para catedra 30)

Lo siguiente no aplica a tuplas

i ”:-"ﬂ ! =]
i =da PONTIFICLA

ZEP\) UNIVERSIDAD f —
) ot Asignar elementos (=)
L[5 -l = u >>> a = [1,2,3]

>>> al0] = -1
. o >>> print(a)
« Asignaelvalorualaposicion [-1, 2, 3]

(indice) i de L s> aro] - 1
>>> print(a)
(1, 2, 3]
>>> b = a

>>> b[-1] = 1000
>>> print(b)
[1, 2, 1000]
>>> print(a)
[1, 2, 1000]

lEir;j o . .
1 o PONTIFICLA

& /r O Anexar elementos (append)

L.append(u) >>> a = [1,2,3]

>>> a.append(-1)
>>> print(a)
* Anexa el valor u al final de Ia [1, 2, 3, —1]
lista L, como un elemento mas
>>> a.append([0,5])
>>> print(a)

[l, 2; 39 _la 194_511

>>> b = a

>>> b.append("!!!™)

>>> print(b)

(1, 2, 3, -1, [0, 5], "Lil']
>>> print(a)

(1, 2, 3, -1, [0, 5], "Lil']

f}ﬁ-{m“”g PONTIFICLA
2 @éﬂ:"ﬁ) UNIVERSIDAD
%*’" =l CATOLICA
\ % DI CHILE

u)

L.insert(1,

* |Inserta el valoruen el indicei

de la lista L, desplazando los
indices de los elementos
posteriores en la lista en +1
lugar

Insertar elementos (insert)

>>> L = [0,1,2,3,4]
>>> print(L)
[0, 1, 2, 3, 4]

>>> L.insert(0,"ari")
>>> print(L)
['ari', 0, 1, 2, 3, 4]

>>> L.insert(3,"gato")
>>> print(L)

['ari', 0, 1, 'gato',k 2, 3, 4]
>>> L.insert(-1,"miau")

>>> print(L)
['ari',0, 1,'gato’
4]

I] I
432, 3, 'miau’,

7 G,
J;’;f"" ' PONTIFICLA
& I@{F'ﬁ%u_ UNIVERSIDAD
-.-a ; *’"-“ CATOLICA
'¢\, i ﬁ-' DL CHILE

L.pop(i)

* Remueve el elemento en el
indice iy lo retorna

e Silno seentrega, se asume
i =-1 (remover el ultimo
elemento)

 Losindices de los elementos
posteriores cambian en -1

Remover elementos (pop)

>>> L = ['cat', 'dog', 'bird']
>>> print(L)
['cat', 'dog', 'bird']

>>> a = L.pop(0)
>>> print(a)

cat

>>> print(L)
['dog', 'bird']

>>> a = L.pop(-1)
>>> print(a)

bird

>>> print(L)
['dog']

%‘;‘%%h%r PONTIFICLA

e 7\ UNIVERSIDAD i

(Sl b Extender una lista con otra (extend)
%ﬁf‘/w/ DL CHILE

L.extend(M) >>> L= 11,2]
>>> print(L)
[1, 2]

 Toma los elementos de My

los anexa al final de L >>> L.extend([3,4])

>>> print(L)
[1, 2, 3, 4]
* M puede ser lista, tupla, string,
u otra secuencia de valores
- SiMes lista o tupla: se
anexan los elementos a L
- SiMesstring: se anexa cada >>> L.extend("78")

caracter como elementoal >>> print(L)
[l, 2, 3’ 4, 5, 6, '7'." '8' :l

>>> L.extend((5,6))
>>> print(L)
[1, 2, 3, 4, 5, 6]

