

Objetivos

● Materiales clase pasada
● Clase expositiva

– Videos serán subidos después
● Introducir listas y tuplas
● Énfasis en listas, pues tuplas son versión reducida
● Demostrar con código

¿Qué es una lista?

● ¿Qué es? Una lista (tipo list) es
una secuencia finita y
ordenada de valores
(elementos)
– Muy parecidas a las tuplas
– Pero admiten cambio de

contenido

● Ejemplo:
[10, 20, 30, 40, 50]

>>> # definamos algunas listas

>>> [10,20,30,40]
[10, 20, 30, 40]

>>> ["hola","mundo"]
['hola', 'mundo']

>>> [True,True,True]
[True, True, True]

Pueden contener múltiples tipos

● Las listas pueden contener
ints, floats, strings, tuplas, etc,
incluso otras listas

● No hay restricción sobre los
tipos de valores que pueden
contener

● Ejemplo:
[5, 5.5, (6, 6.5), False]

>>> # definamos algunas listas

>>> x = [10,0,"hola",False,
-5.5]
>>> print(x)
[10, 0, 'hola', False, -5.5]

>>> x = [-1,True,(5,5,5)]
>>> print(x)
[-1, True, (5, 5, 5)]

Listas de cero y un elementos

● Lista vacía: podemos definir
una lista vacía de dos
maneras

x = []
y = list()

Aquí x e y son listas vacías
(son iguales para Python)

● Lista de un elemento: se
coloca el elemento entre
corchetes

x = [1]

>>> a = []
>>> b = list()

>>> print(a,b)
[] []

>>> a == b
True

>>> c = [1]
>>> print(c)
[1]

Tuplas de cero y un elementos

● Tupla vacía: podemos definir
una tupla vacía de dos
maneras

x = ()
y = tuple()

Aquí x e y son tuplas vacías
(son iguales para Python)

● Tupla de un elemento: se
coloca el elemento entre
paréntesis, pero con coma

x = (1,)

>>> a = ()
>>> b = tuple()

>>> print(a,b)
() ()

>>> a == b
True

>>> c = (1,)
>>> print(c)
(1,)

Concatenar listas

● La concatenación entre listas
y entre tuplas se hace igual
que con strings

● Usamos el operador + para
concatenar

[1,2,3] + [4,5,6]
(1,2,3) + (4,5,6)

● No podemos concatenar listas a
strings, tuplas u otros tipos de
datos

>>> [1,2,3] + [4,5,6]
[1, 2, 3, 4, 5, 6]

>>> [] + [] + [] + []
[]

>>> [1] + [2] + [3] + [4]
[1, 2, 3, 4]

>>> [1,2,3] + [4]
[1, 2, 3, 4]

>>> [1,2,3] + [] + [4]
[1, 2, 3, 4]

¿¿Concatenar listas con tuplas??

● Conversión de tipos: así como a=int(b) convierte b en un int
(sea b un int, float, str), podemos convertir una secuencia de
un tipo en otra secuencia de otro tipo:

A = [1, 2.0, "iii", "cuatro"] # una lista
B = (5, 6.0, 'vii', 'eight') # una tupla

L = A + list(B) # concatena A con B-como-lista
M = tuple(A) + B # concatena A-como-tupla con B

X = list(A) + list(A) # A ya era lista, se clona

Acceder a elementos según su índice

 x = [True, False, 10, 20, -5.5, 'yup', 0, 0, 'nope']
Python nos deja acceder a los elementos de una lista de manera sencilla

● Basta indicar su índice o posición en la lista
● Funciona igual que con strings y tuplas

True False 10 20 -5.5 'yup' 0 0 'nope'
0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

Acceder a elementos según su índice

El uso de índices es como en strings. Sabiendo esto, qué entrega:

● len(x) -->
● x[1] -->
● x[6] -->

True False 10 20 -5.5 'yup' 0 0 'nope'
0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

Acceder a elementos según su índice

El uso de índices es como en strings. Sabiendo esto, qué entrega:

● len(x) --> 9
● x[1] --> False
● x[6] --> 0

True False 10 20 -5.5 'yup' 0 0 'nope'
0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

Acceder a elementos según su índice

El uso de índices es como en strings. Sabiendo esto, qué entrega:

● x[-4] -->
● x[-1] -->
● x[-len(x)] -->

True False 10 20 -5.5 'yup' 0 0 'nope'
0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

Acceder a elementos según su índice

El uso de índices es como en strings. Sabiendo esto, qué entrega:

● x[-4] --> 'yup'
● x[-1] --> 'nope'
● x[-len(x)] --> True

True False 10 20 -5.5 'yup' 0 0 'nope'
0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

Rebanadas (slices) de listas

El uso de slices es como en strings. Sabiendo esto, qué entrega:

● x[0 : 3] -->
● x[5 : 9] -->
● x[-7:-2] -->

True False 10 20 -5.5 'yup' 0 0 'nope'
0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

Rebanadas (slices) de listas

El uso de slices es como en strings. Sabiendo esto, qué entrega:

● x[0 : 3] --> [True, False, 10]
● x[5 : 9] --> ['yup', 0, 0, 'nope']
● x[-7:-2] --> [10, 20, -5.5, 'yup', 0]

True False 10 20 -5.5 'yup' 0 0 'nope'
0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

Rebanadas (slices) de listas

El uso de slices es como en strings. Sabiendo esto, qué entrega:

● x[4 :-4] -->
● x[-3:] -->
● x[: 3] -->

True False 10 20 -5.5 'yup' 0 0 'nope'
0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

Rebanadas (slices) de listas

El uso de slices es como en strings. Sabiendo esto, qué entrega:

● x[4 :-4] --> [-5.5]
● x[-3:] --> [0, 0, 'nope']
● x[: 3] --> [True, False, 10]

True False 10 20 -5.5 'yup' 0 0 'nope'
0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

Recorriendo usando índices
● Podemos recorrer los elementos

de una lista usando índices

● Ejemplo con for:

for i in range(len(L)):
 print(i, "->", L[i])

● Ejemplo con while:

i = 0
while i < len(L):
 print(i, "->", L[i])
 i = i+1

Con L = [True,False,0,1,
2,3,4,5,"yeah"], output:

0 -> True
1 -> False
2 -> 0
3 -> 1
4 -> 2
5 -> 3
6 -> 4
7 -> 5
8 -> yeah

Caso especial: for sobre listas
● La instrucción for también puede

iterar sobre listas, obteniendo
directamente cada elemento de la
lista en cuestión
– Igual que con strings y tuplas

● Código de ejemplo:

L = [True,False,0,1,2,3, 4,5,"yeah"]

for c in L:
 print(c)

Output:

True
False
0
1
2
3
4
5
yeah

Podemos detectar elementos (in)

● La instrucción in detecta
pertenencia

● in entrega True/False
(booleano)

● Similarmente, está la
instrucción not in, que es la
negación de in

>>> L = [10,0.5,'txt']
>>> 10 in L
True
>>> 'txt' in L
True
>>> 0 in L
False
>>> 10 not in L
False
>>> 'txt' not in L
False
>>> 0 not in L
True

No podemos detectar sublistas (in)

● Una sublista es una porción
(rebanada, slice) de una lista
– Ej. [10,5] es sublista de

[1,10,5,8]

● La instrucción in no detecta
sublistas
– ...ni subtuplas

>>> L = [10,0.5,'txt']

>>> [10,0.5] in L
False
>>> [10,0.5] == L[:2]
True

>>> [10] in L
False
>>> [10] == L[:1]
True

Contar elementos (count)

x.count(u)

● Entrega la cantidad de veces
que aparece el elemento u
dentro de x

● Si el elemento no fue
encontrado, entrega 0

>>> x = [5,-5,0,0.5,"python",0,0]
>>> x.count(0)
3
>>> x.count(5)
1
>>> x.count(-5)
1
>>> x.count("python")
1
>>> x.count(10)
0
>>> x.count("PYTHON")
0

Encontrar elementos (index)

x.index(u)

● Encuentra el primer índice en
el cual se encuentra el
elemento u, o falla

>>> x = [5,-5,0,0.5,"python",0,0]
>>> x.index(0)
2
>>> x.index(5)
0
>>> x.index(-5)
1
>>> x.index("python")
4

>>> x.index(10)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: list.index(x): x not in list
>>> x.index("PYTHON")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: list.index(x): x not in list

Mutación de listas
(para cátedra 30)

Lo siguiente no aplica a tuplas

Asignar elementos (=)

L[i] = u

● Asigna el valor u a la posición
(índice) i de L

>>> a = [1,2,3]

>>> a[0] = -1
>>> print(a)
[-1, 2, 3]

>>> a[0] = 1
>>> print(a)
[1, 2, 3]

>>> b = a
>>> b[-1] = 1000
>>> print(b)
[1, 2, 1000]
>>> print(a)
[1, 2, 1000]

Anexar elementos (append)

L.append(u)

● Anexa el valor u al final de la
lista L, como un elemento más

>>> a = [1,2,3]

>>> a.append(-1)
>>> print(a)
[1, 2, 3, -1]

>>> a.append([0,5])
>>> print(a)
[1, 2, 3, -1, [0, 5]]

>>> b = a
>>> b.append("!!!")
>>> print(b)
[1, 2, 3, -1, [0, 5], '!!!']
>>> print(a)
[1, 2, 3, -1, [0, 5], '!!!']

Insertar elementos (insert)

L.insert(i, u)

● Inserta el valor u en el índice i
de la lista L, desplazando los
índices de los elementos
posteriores en la lista en +1
lugar

>>> L = [0,1,2,3,4]
>>> print(L)
[0, 1, 2, 3, 4]

>>> L.insert(0,"ari")
>>> print(L)
['ari', 0, 1, 2, 3, 4]

>>> L.insert(3,"gato")
>>> print(L)
['ari', 0, 1, 'gato', 2, 3, 4]

>>> L.insert(-1,"miau")
>>> print(L)
['ari',0, 1,'gato',2, 3,'miau',
4]

Remover elementos (pop)

L.pop(i)

● Remueve el elemento en el
índice i y lo retorna

● Si i no se entrega, se asume
i = -1 (remover el último
elemento)

● Los índices de los elementos
posteriores cambian en -1

>>> L = ['cat', 'dog', 'bird']
>>> print(L)
['cat', 'dog', 'bird']

>>> a = L.pop(0)
>>> print(a)
cat
>>> print(L)
['dog', 'bird']

>>> a = L.pop(-1)
>>> print(a)
bird
>>> print(L)
['dog']

Extender una lista con otra (extend)

L.extend(M)

● Toma los elementos de M y
los anexa al final de L

● M puede ser lista, tupla, string,
u otra secuencia de valores
– Si M es lista o tupla: se

anexan los elementos a L
– Si M es string: se anexa cada

caracter como elemento a L

>>> L = [1,2]
>>> print(L)
[1, 2]

>>> L.extend([3,4])
>>> print(L)
[1, 2, 3, 4]

>>> L.extend((5,6))
>>> print(L)
[1, 2, 3, 4, 5, 6]

>>> L.extend("78")
>>> print(L)
[1, 2, 3, 4, 5, 6, '7', '8']

